Code: 20CE6401

II B.Tech - II Semester - Regular Examinations - MAY 2023

ADVANCED CONCRETE TECHNOLOGY (HONORS in CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks	
		UNIT-I			TVICTION	
1	a)	Discuss about different types of cements used in the field application and also explain about the field tests and laboratory tests on cement?	L2	CO1	7 M	
	b)	Make use of size, shape and texture to decide the different type of aggregates and how each of these are affecting the strength of concrete?	L2	CO1	7 M	
OR						
2	a)	Explain in detail about the specific gravity, bulk density, porosity and moisture content of aggregates?	L2	CO1	7 M	
	b)	Outline the effects of mineral admixtures and chemical admixtures on fresh and hardened properties of concrete?	L2	CO1	7 M	

		UNIT-II						
3	a)	Develop a relation of flexural strength, tensile strength, modulus of elasticity with respect to characteristics strength of	L2	CO2	7 M			
		concrete?						
	b)	List out the various factors affecting the	L2	CO2	7 M			
		workability and explain them?						
	OR							
4	a)	Explain mix design of concrete? Elaborate	L2	CO2	7 M			
		various factors to be considered for mix						
		design of concrete?						
	b)	1	L2	CO2	7 M			
		of compressive and tensile strength of						
		concrete from preparation of sample to						
		testing?						
	UNIT-III							
5	a)	Classify different Light weight concrete	L2	CO3	7 M			
		based on mix proportion, application and properties?						
	b)	Examine no fines concrete? Explain the	L2	CO3	7 M			
		advantages of the no fines concrete over						
		ordinary concrete?						
	OR							
6	a)	Design a concrete mix for M20 grade of	L4	CO3	14 M			
		concrete using IS:10262: 2019 guidelines						
		and with the following data:						
		Cement type: OPC 53 grade						
		Specific gravity of cement: 3.15						

		1 1 1 20				
		Max. nominal size of aggregate: 20 mm				
		Specific gravity of Coarse agg. : 2.65				
		Specific gravity of Fine agg.: 2.60				
		Type of Exposure: Severe				
		Slump required: 100 mm				
		Fine aggregate confirms to Zone – III				
		Assume any suitable data if required.				
UNIT-IV						
7	a)	Outline about different types polymer	L2	CO4	7 M	
		concrete and describe the advantages of				
		polymers concrete?				
	b)	Summarize about fibre reinforced concrete	L2	CO4	7 M	
		and explain the factor affecting the				
		properties Fiber reinforced concrete?				
	•	OR		1		
8	a)	Explain about high volume fly ash concrete	L2	CO4	7 M	
		and write about its composition and				
		applications?				
	b)	Explain about various types of fibres used in	L2	CO4	7 M	
		FRC?				
		UNIT-V				
9	Exp	plain the need for self compacting concrete.	L2	CO5	14 M	
	Me	ntion its properties. What are different test				
	met	thods for determining the fresh properties of				
	SC	C?				
OR						

10	a)	Explain in detail about High performance	L2	CO5	7 M
		concrete and its applications			
	b)	Illustrate about High density concrete and	L2	CO5	7 M
		its applications			